Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.296
Filtrar
1.
Nat Commun ; 15(1): 2989, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582902

RESUMO

Despite the identification of driver mutations leading to the initiation of myeloproliferative neoplasms (MPNs), the molecular pathogenesis of MPNs remains incompletely understood. Here, we demonstrate that growth arrest and DNA damage inducible gamma (GADD45g) is expressed at significantly lower levels in patients with MPNs, and JAK2V617F mutation and histone deacetylation contribute to its reduced expression. Downregulation of GADD45g plays a tumor-promoting role in human MPN cells. Gadd45g insufficiency in the murine hematopoietic system alone leads to significantly enhanced growth and self-renewal capacity of myeloid-biased hematopoietic stem cells, and the development of phenotypes resembling MPNs. Mechanistically, the pathogenic role of GADD45g insufficiency is mediated through a cascade of activations of RAC2, PAK1 and PI3K-AKT signaling pathways. These data characterize GADD45g deficiency as a novel pathogenic factor in MPNs.


Assuntos
Transtornos Mieloproliferativos , Neoplasias , Animais , Humanos , Camundongos , Janus Quinase 2/metabolismo , Mutação , Transtornos Mieloproliferativos/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/genética
2.
Oncol Rep ; 51(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38577936

RESUMO

Cancer cells are characterized by increased glycolysis, known as the Warburg effect, which leads to increased production of cytotoxic methylglyoxal (MGO) and apoptotic cell death. Cancer cells often activate the protective nuclear factor erythroid 2­related factor2 (Nrf2)/glyoxalase1 (Glo1) system to detoxify MGO. The effects of sodium butyrate (NaB), a product of gut microbiota, on Nrf2/Glos/MGO pathway and the underlying mechanisms in prostate cancer (PCa) cells were investigated in the present study. Treatment with NaB induced the cell death and reduced the proliferation of PCa cells (DU145 and LNCap). Moreover, the protein kinase RNA-like endoplasmic reticulum kinase/Nrf2/Glo1 pathway was greatly inhibited by NaB, thereby accumulating MGO-derived adduct hydroimidazolone (MG-H1). In response to a high amount of MGO, the expression of Nrf2 and Glo1 was attenuated, coinciding with an increased cellular death. NaB also markedly inhibited the Janus kinase 2 (JAK2)/Signal transducer and activator of transcription 3 (Stat3) pathway. Conversely, co­treatment with Colivelin, a Stat3 activator, significantly reversed the effects of NaB on Glo1 expression, MG-H1 production, and the cell migration and viability. As expected, overexpression of Stat3 or Glo1 reduced NaB­induced cell death. The activation of calcium/calmodulin dependent protein kinase II gamma and reactive oxygen species production also contributed to the anticancer effect of NaB. The present study, for the first time, demonstrated that NaB greatly increases MGO production through suppression of the JAK2/Stat3/Nrf2/Glo1 pathway in DU145 cells, a cell line mimicking castration­resistant PCa (CRPC), suggesting that NaB may be a potential agent for PCa therapy.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Ácido Butírico/farmacologia , Janus Quinase 2/metabolismo , Óxido de Magnésio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Aldeído Pirúvico/metabolismo , Fator de Transcrição STAT3/metabolismo
3.
J Cell Mol Med ; 28(8): e18332, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38661644

RESUMO

The role of KIAA0040 role in glioma development is not yet understood despite its connection to nervous system diseases. In this study, KIAA0040 expression levels were evaluated using qRT-PCR, WB and IHC, and functional assays were conducted to assess its impact on glioma progression, along with animal experiments. Moreover, WB was used to examine the impact of KIAA0040 on the JAK2/STAT3 signalling pathway. Our study found that KIAA0040 was increased in glioma and linked to tumour grade and poor clinical outcomes, serving as an independent prognostic factor. Functional assays showed that KIAA0040 enhances glioma growth, migration and invasion by activating the JAK2/STAT3 pathway. Of course, KIAA0040 enhances glioma growth by preventing tumour cell death and promoting cell cycle advancement. Our findings suggest that targeting KIAA0040 could be an effective treatment for glioma due to its role in promoting aggressive tumour behaviour and poor prognosis.


Assuntos
Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glioma , Janus Quinase 2 , Fator de Transcrição STAT3 , Transdução de Sinais , Glioma/genética , Glioma/patologia , Glioma/metabolismo , Janus Quinase 2/metabolismo , Janus Quinase 2/genética , Humanos , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Movimento Celular/genética , Feminino , Masculino , Camundongos , Prognóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Camundongos Nus , Pessoa de Meia-Idade
4.
Eur J Pharmacol ; 970: 176490, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38492876

RESUMO

Neurodegenerative diseases (NDDs) are a collection of incapacitating disorders in which neuroinflammation and neuronal apoptosis are major pathological consequences due to oxidative stress. Neuroinflammation manifests in the impacted cerebral areas as a result of pro-inflammatory cytokines stimulating the Janus Kinase2 (JAK2)/Signal Transducers and Activators of Transcription3 (STAT3) pathway via neuronal cells. The pro-inflammatory cytokines bind to their respective receptor in the neuronal cells and allow activation of JAK2. Activated JAK2 phosphorylates tyrosines on the intracellular domains of the receptor which recruit the STAT3 transcription factor. The neuroinflammation issues are exacerbated by the active JAK2/STAT3 signaling pathway in conjunction with additional transcription factors like nuclear factor kappa B (NF-κB), and the mammalian target of rapamycin (mTOR). Neuronal apoptosis is a natural process made worse by persistent neuroinflammation and immunological responses via caspase-3 activation. The dysregulation of micro-RNA (miR) expression has been observed in the consequences of neuroinflammation and neuronal apoptosis. Neuroinflammation and neuronal apoptosis-associated gene amplification may be caused by dysregulated miR-mediated aberrant phosphorylation of JAK2/STAT3 signaling pathway components. Therefore, JAK2/STAT3 is an attractive therapeutic target for NDDs. Numerous synthetic and natural small molecules as JAK2/STAT3 inhibitors have therapeutic advances against a wide range of diseases, and many are now in human clinical studies. This review explored the interactive role of the JAK2/STAT3 signaling system with key pathological factors during the reinforcement of NDDs. Also, the clinical trial data provides reasoning evidence about the possible use of JAK2/STAT3 inhibitors to abate neuroinflammation and neuronal apoptosis in NDDs.


Assuntos
MicroRNAs , Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neuroinflamatórias , Janus Quinase 2/metabolismo , Fatores de Transcrição/metabolismo , Citocinas/metabolismo , MicroRNAs/genética , Fator de Transcrição STAT3/metabolismo , Apoptose/genética
5.
J Cancer Res Clin Oncol ; 150(3): 168, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546908

RESUMO

OBJECTIVES: The aim of this study was to investigate the anti-tumor effect of resveratrol (RSV) on glioblastoma (GBM) and its specific mechanism in improving the inflammatory response of the tumor microenvironment. The tumor microenvironment of GBM is highly neuroinflammatory, inducing tumor immunosuppression. Therefore, ameliorating the inflammatory response is an important focus for anti-tumor research. METHODS: The anti-tumor effect of RSV on GBM was demonstrated through in vitro cellular assays, including CCK-8, EdU, PI staining, Transwell, wound healing assay, and flow cytometry. Potential mechanisms of RSV's anti-GBM effects were identified through network pharmacological analysis. In addition, the relationship of RSV with the JAK2/STAT3 signaling pathway and the inflammasome NLRP3 was verified using Western blot. RESULTS: RSV significantly inhibited cell viability in GBM cell lines LN-229 and U87-MG. Furthermore, it inhibited the proliferation and invasive migration ability of GBM cells, while promoting apoptosis. Network pharmacological analysis revealed a close association between the anti-GBM effects of RSV and the JAK/STAT signaling pathway, as well as inflammatory responses. Western blot analysis confirmed that RSV inhibited the over-activation of the inflammasome NLRP3 through the JAK2/STAT3 signaling pathway. Partial reversal of RSV's inhibition of inflammasome NLRP3 was observed with the addition of the JAK/STAT agonist RO8191. CONCLUSIONS: In vitro, RSV can exert anti-tumor effects on GBM and improve the inflammatory response in the GBM microenvironment by inhibiting the activation of the JAK2/STAT3 signaling pathway. These findings provide new insights into potential therapeutic targets for GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patologia , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neoplasias Encefálicas/patologia , Fator de Transcrição STAT3/metabolismo , Linhagem Celular Tumoral , Janus Quinase 2/metabolismo , Microambiente Tumoral
6.
Immun Inflamm Dis ; 12(3): e1224, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38517042

RESUMO

BACKGROUND: Ulcerative colitis (UC) is a chronic inflammatory bowel disease caused by numerous factors, such as immune system dysfunction and genetic factors. MicroRNAs (miRNAs) play a crucial role in UC pathogenesis, particularly via the JAK-STAT pathway. Our aim was to investigate the association between miRNA-101 and JAK2-STAT3 signaling pathway with inflammatory cytokines in UC patients. METHODS: We enrolled 35 UC patients and 35 healthy individuals as the control group, referred to Shariati Hospital, Tehran, Iran. Patients were diagnosed based on clinical, laboratory, histological, and colonoscopy criteria. RNA and protein extracted from tissue samples. Real-time PCR was used to assess the expression levels of miRNA-101, interleukin (IL)-1ß, IL-6, tumor necrosis factor (TNF)-α, and IL-10 genes, while western blot was employed to measure levels of P-STAT3, total STAT3, and JAK2 proteins. RESULTS: Expression of pro-inflammatory cytokines TNF-α, IL-1ß, and IL-6 significantly increased, while the expression of IL-10 significantly decreased in the case group versus controls. Additionally, miRNA-101 expression was significantly higher in UC patients. A significant correlation between miRNA-101 and IL-6 expression was observed, indicating their relationship and possible impact on cell signaling pathways, JAK2-STAT3. No significant changes were observed in phosphorylated and total STAT3 and JAK2 protein expression. CONCLUSION: This study provides evidence of increased miRNA-101 expression in UC tissue, suggesting a potential correlation between miRNA-101 and IL-6 expression and their involvement in the JAK2-STAT3 pathway. The study confirms alterations in UC patients' pro-inflammatory cytokines and anti-inflammatory IL-10. However, further investigations are needed to understand the exact role of miRNA-101 in UC pathogenesis fully.


Assuntos
Colite Ulcerativa , MicroRNAs , Humanos , Citocinas/metabolismo , Colite Ulcerativa/genética , Colite Ulcerativa/metabolismo , MicroRNAs/genética , Interleucina-10/genética , Interleucina-10/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/genética , Interleucina-1beta/genética , Janus Quinases/metabolismo , Transdução de Sinais , Irã (Geográfico) , Fatores de Transcrição STAT/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
7.
Biochem Biophys Res Commun ; 706: 149758, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38484571

RESUMO

Byakangelicin mostly obtained from the root of Angelica dahurica and has protective effect on liver injury and fibrosis. In addition, Byakangelicin, as a traditional medicine, is also used to treat colds, headache and toothache. Recent studies have shown that Byakangelicin exhibits anti-tumor function; however, the role of Byakangelicin in breast tumor progression and related mechanism has not yet been elucidated. Our study aims to investigate the role of Byakangelicin in breast tumor progression and the underlying mechanism. To measure the effect of Byakangelicin on JAK2/STAT3 signaling, a dual luciferase reporter assay and a Western blot assay were performed. CCK8, colony formation, apoptosis and cell invasion assays were used to examine the inhibitory potential of Byakangelicin on breast cancer cells. Additionally, SHP-1 was silenced by specific siRNA duplex and the function of SHP-1 on Byakangelicin-mediated inhibition of JAK2/STAT3 signaling was evaluated. Byakangelicin treatment significantly inhibited STAT3 transcriptional activity. In addition, Byakangelicin treatment blocked JAK2/STAT3 signaling in a dose-dependent manner. Byakangelicin-treated tumor cells showed a dramatically reduced proliferation, colony formation and invasion ability. Moreover, Byakangelicin remarkedly induced breast cancer cell apoptosis. Furthermore, Byakangelicin regulated the expression of SHP1.In conclusion, our current study indicated that Byakangelicin, a natural compound, inhibits SHP-1/JAK2/STAT3 signaling and thus blocks tumor growth and motility.


Assuntos
Neoplasias da Mama , Furocumarinas , Transdução de Sinais , Humanos , Feminino , Linhagem Celular Tumoral , Proliferação de Células , Apoptose , Neoplasias da Mama/tratamento farmacológico , Fator de Transcrição STAT3/metabolismo , Janus Quinase 2/metabolismo
8.
Toxicol Appl Pharmacol ; 484: 116882, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38437956

RESUMO

The role of O-linked N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation) in the pathogenesis of inflammatory bowel disease (IBD) has been increasingly highlighted in recent studies. It's been reported that signal transducer and activator of transcription 3 (STAT3) O-GlcNAcylation can affect the activity of the Janus kinase2 (JAK2)/STAT3 pathway.Our recent study showed that resveratrol repairsIBDin mice.On this basis,the present study aimed to explore whether the mechanism of IBD repair by resveratrol is associated with STAT3 O-GlcNAcylation. Pretreatment of colitis mice and intestinal epithelial cells with an O-GlcNAcylation promoter (Thiamet G, or Glucosamine) and an O-GlcNAcylation inhibitor (OSMI-1) showed that increased O-GlcNAcylation promoted colitis in mice.The pro-inflammatory cytokines interleukin (IL) -6, IL-1ß, and tumor necrosis factor-α (TNF-α) were increased, while the anti-inflammatory cytokine IL-10 was decreased. Moreover, the downstream target proteins of JAK2/STAT3, cyclooxygenase-2 and nitric oxide synthase 2 were up-regulated, Resveratrol treatment mitigated the inflammation by decreasing JAK2/STAT3 activity, as well as STAT3 O-GlcNAcylation. Finally, the correlation between STAT3 glycosylation and phosphorylation in intestinal epithelial cells under the effect of resveratrol was investigated by Immunofluorescence co-localization and immunoprecipitation.The results showed that resveratrol inhibited STAT3 O-GlcNAcylation, thereby inhibiting its phosphorylation, reducing JAK2/STAT3 pathway activity, and alleviating IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Camundongos , Animais , Fator de Transcrição STAT3/metabolismo , Resveratrol/farmacologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Colite/patologia , Citocinas/metabolismo , Células Epiteliais/metabolismo , Janus Quinase 2/metabolismo
9.
Sci Adv ; 10(10): eadl2097, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457493

RESUMO

Janus kinase 2 (JAK2) mediates type I/II cytokine receptor signaling, but JAK2 is also activated by somatic mutations that cause hematological malignancies by mechanisms that are still incompletely understood. Quantitative superresolution microscopy (qSMLM) showed that erythropoietin receptor (EpoR) exists as monomers and dimerizes upon Epo stimulation or through the predominant JAK2 pseudokinase domain mutations (V617F, K539L, and R683S). Crystallographic analysis complemented by kinase activity analysis and atomic-level simulations revealed distinct pseudokinase dimer interfaces and activation mechanisms for the mutants: JAK V617F activity is driven by dimerization, K539L involves both increased receptor dimerization and kinase activity, and R683S prevents autoinhibition and increases catalytic activity and drives JAK2 equilibrium toward activation state through a wild-type dimer interface. Artificial intelligence-guided modeling and simulations revealed that the pseudokinase mutations cause differences in the pathogenic full-length JAK2 dimers, particularly in the FERM-SH2 domains. A detailed molecular understanding of mutation-driven JAK2 hyperactivation may enable novel therapeutic approaches to selectively target pathogenic JAK2 signaling.


Assuntos
Eritropoetina , Janus Quinase 2 , Inteligência Artificial , Eritropoetina/genética , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Mutação , Receptores da Eritropoetina/genética , Transdução de Sinais/genética , Humanos
10.
Int J Mol Sci ; 25(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38474223

RESUMO

The Janus kinase (JAK) family is a small group of protein tyrosine kinases that represent a central component of intracellular signaling downstream from a myriad of cytokine receptors. The JAK3 family member performs a particularly important role in facilitating signal transduction for a key set of cytokine receptors that are essential for immune cell development and function. Mutations that impact JAK3 activity have been identified in a number of human diseases, including somatic gain-of-function (GOF) mutations associated with immune cell malignancies and germline loss-of-function (LOF) mutations associated with immunodeficiency. The structure, function and impacts of both GOF and LOF mutations of JAK3 are highly conserved, making animal models highly informative. This review details the biology of JAK3 and the impact of its perturbation in immune cell-related diseases, including relevant animal studies.


Assuntos
Síndromes de Imunodeficiência , Neoplasias , Animais , Humanos , Janus Quinase 3/metabolismo , Transdução de Sinais , Janus Quinases/metabolismo , Receptores de Citocinas/metabolismo , Janus Quinase 1/metabolismo , Janus Quinase 2/metabolismo
11.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474305

RESUMO

Patients with inflammatory bowel disease (IBD) who experience long-term chronic inflammation of the colon are at an increased risk of developing colorectal cancer (CRC). Mitotic spindle positioning (MISP), an actin-binding protein, plays a role in mitosis and spindle positioning. MISP is found on the apical membrane of the intestinal mucosa and helps stabilize and elongate microvilli, offering protection against colitis. This study explored the role of MISP in colorectal tumorigenesis using a database, human CRC cells, and a mouse model for colitis-induced colorectal tumors triggered by azoxymethane (AOM)/dextran sodium sulfate (DSS) treatment. We found that MISP was highly expressed in colon cancer patient tissues and that reduced MISP expression inhibited cell proliferation. Notably, MISP-deficient mice showed reduced colon tumor formation in the AOM/DSS-induced colitis model. Furthermore, MISP was found to form a complex with Opa interacting protein 5 (OIP5) in the cytoplasm, influencing the expression of OIP5 in a unidirectional manner. We also observed that MISP increased the levels of phosphorylated STAT3 in the JAK2-STAT3 signaling pathway, which is linked to tumorigenesis. These findings indicate that MISP could be a risk factor for CRC, and targeting MISP might provide insights into the mechanisms of colitis-induced colorectal tumorigenesis.


Assuntos
Colite , Neoplasias Colorretais , Animais , Humanos , Camundongos , Azoximetano/efeitos adversos , Carcinogênese , Transformação Celular Neoplásica , Colite/patologia , Neoplasias Colorretais/patologia , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Janus Quinase 2/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais , Fuso Acromático/metabolismo , Fator de Transcrição STAT3/metabolismo
12.
Exp Hematol ; 132: 104178, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38340948

RESUMO

Myeloproliferative neoplasms (MPNs) are driven by hyperactivation of JAK-STAT signaling but can demonstrate skewed hematopoiesis upon acquisition of additional somatic mutations. Here, using primary MPN samples and engineered embryonic stem cells, we demonstrate that mutations in JAK2 induced a significant increase in erythroid colony formation, whereas mutations in additional sex combs-like 1 (ASXL1) led to an erythroid colony defect. RNA-sequencing revealed upregulation of protein arginine methyltransferase 6 (PRMT6) induced by mutant ASXL1. Furthermore, genetic perturbation of PRMT6 exacerbated the MPN disease burden, including leukemic engraftment and splenomegaly, in patient-derived xenograft models, highlighting a novel tumor-suppressive function of PRMT6. However, augmented erythroid potential and bone marrow human CD71+ cells following PRMT6 knockdown were reserved only for primary MPN samples harboring ASXL1 mutations. Last, treatment of CD34+ hematopoietic/stem progenitor cells with the PRMT6 inhibitor EPZ020411 induced expression of genes involved in heme metabolism, hemoglobin, and erythropoiesis. These findings highlight interactions between JAK2 and ASXL1 mutations and a unique erythroid regulatory network in the context of mutant ASXL1.


Assuntos
Transtornos Mieloproliferativos , Neoplasias , Humanos , Eritropoese/genética , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Transdução de Sinais , Mutação , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Nucleares/genética , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo
13.
Biochem Pharmacol ; 222: 116068, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387529

RESUMO

Non-small cell lung cancer (NSCLC) still lacks effective treatment because of its extensive mutation diversity and frequent drug resistance. Therefore, it is urgent to develop new therapeutic strategies for NSCLC. In this study, we evaluated the inhibitory effect of a new coumarin-furoxan hybrid compound 9, a nitric oxide (NO) donor drug, on NSCLC proliferation and its mechanism. Our results show that compound 9 can inhibit the growth of four NSCLC cell lines and H1975 xenograft model in a dose-dependent manner. Compound 9 effectively releases high concentrations of NO within the mitochondria, leading to cellular oxidative stress, mitochondrial dysfunction, and apoptosis. Moreover, compound 9 inhibits JAK2/STAT3 protein phosphorylation and induces S-nitrosylation modification of STAT3, ultimately resulting in endogenous apoptosis in NSCLC. Additionally, compound 9 significantly induces NSCLC ferroptosis by depleting intracellular GSH, elevating MDA levels, inhibiting SLC7A11/GSH protein expression, and negatively regulating the JAK2/STAT3 pathway. In summary, this study elucidates the inhibitory effects of compound 9 on NSCLC proliferation and provides insights into the underlying mechanisms, offering new possibilities for NSCLC treatment strategies.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Ferroptose , Neoplasias Pulmonares , Oxidiazóis , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Doadores de Óxido Nítrico/farmacologia , Doadores de Óxido Nítrico/uso terapêutico , Fator de Transcrição STAT3/metabolismo , Apoptose , Cumarínicos/farmacologia , Cumarínicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Janus Quinase 2/metabolismo
14.
Int J Biochem Cell Biol ; 169: 106552, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403048

RESUMO

Our study identified a novel long noncoding RNA, LINC01322, that acts as an oncogene in lung adenocarcinoma progression. Cytoplasmic and nuclear RNA purification assays indicated that LINC01322 was localized in the cytoplasm and nucleus. Gene set enrichment analysis revealed the involvement of LINC01322 in the regulation of cell proliferation, migration, and the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway. LINC01322 may promote lung adenocarcinoma proliferation and migration through the Janus kinase/signal transducer and activator of transcription signaling pathway. In vitro experiments demonstrated that the knockdown of LINC01322 significantly suppressed lung adenocarcinoma cell proliferation, migration, and activation of the Janus kinase 2/signal transducer and activator of transcription 3 signaling pathway, whereas overexpression had the opposite effects. Inhibition of the Janus kinase 2/signal transducer and activator of transcription 3 pathway activity partially reversed the enhancement of cell proliferation and migration caused by LINC01322 overexpression. In vivo experiments further verified the oncogene role of LINC01322. Altogether, our findings suggest that LINC01322 promotes lung adenocarcinoma progression by activating the Janus kinase 2/signal transducer and activator of transcription 3 signaling pathway and that it could be a therapeutic target.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Janus Quinase 2/metabolismo , Fator de Transcrição STAT3/metabolismo , Prognóstico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Proliferação de Células/genética , Janus Quinases/metabolismo , Oncogenes , Neoplasias Pulmonares/patologia , Biomarcadores
15.
Microbiol Res ; 282: 127626, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38330817

RESUMO

Bloodstream infection (BSI) refers to the infection of blood by pathogens. Severe immune response to BSI can lead to sepsis, a systemic infection leading to multiple organ dysfunction, coupled with drug resistance, mortality, and limited clinical treatment options. This work aims to further investigate the new interplay between bacterial exocrine regulatory protein and host immune cells in the context of highly drug-resistant malignant BSI. Whether interfering with related regulatory signaling pathways can reverse the inflammatory disorder of immune cells. In-depth analysis of single-cell sequencing results in Septic patients for potential immunodeficiency factors. Analysis of key proteins enriched by host cells and key pathways using proteomics. Cell models and animal models validate the pathological effects of DnaK on T cells, MAITs, macrophages, and osteoclasts. The blood of patients was analyzed for the immunosuppression of T cells and MAITs. We identified that S. maltophilia-DnaK was enriched in immunodeficient T cells. The activation of the JAK2/STAT1 axis initiated the exhaustion of T cells. Septic patients with Gram-negative bacterial infections exhibited deficiencies in MAITs, which correspond to IFN-γ. Cellular and animal experiments confirmed that DnaK could facilitate MAIT depletion and M1 polarization of macrophages. Additionally, Fludarabine mitigated M1 polarization of blood, liver, and spleen in mice. Interestingly, DnaK also repressed osteoclastogenesis of macrophages stimulated by RANKL. S.maltophilia-DnaK prompts the activation of the JAK2/STAT1 axis in T cells and the M1 polarization of macrophages. Targeting the DnaK's crosstalk can be a potentially effective approach for treating the inflammatory disorder in the broad-spectrum drug-resistant BSI.


Assuntos
Anti-Infecciosos , Sepse , Humanos , Animais , Camundongos , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Macrófagos , Fígado , Anti-Infecciosos/metabolismo , Proteínas de Bactérias/metabolismo , Linfócitos T/metabolismo , Fator de Transcrição STAT1/metabolismo , Janus Quinase 2/metabolismo
16.
Adv Sci (Weinh) ; 11(15): e2306623, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342622

RESUMO

Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Functionally uncharacterized genes are an attractive repository to explore candidate oncogenes. It is demonstrated that C21orf58 displays an oncogenic role in promoting cell growth, tumorigenesis and sorafenib resistance of HCC cells by abnormal activation of STAT3 signaling. Mechanistically, a novel manner to regulate STAT3 signaling that adaptor C21orf58 forms a ternary complex is reveal with N-terminal domain of STAT3 and SH2 domain of JAK2, by which C21orf58 overactivates wild-type STAT3 by facilitating its phosphorylation mediated by JAK2, and hyper-activates of constitutively mutated STAT3 due to preferred binding with C21orf58 and JAK2. Moreover, it is validated that inhibition of C21orf58 with drug alminoprofen, selected by virtual screening, could effectively repress the viability and tumorigenesis of HCC cells. Therefore, it is identified that C21orf58 functions as an oncogenic adaptor, reveal a novel regulatory mechanism of JAK2/STAT3 signaling, explain the cause of abnormal activity of activated mutants of STAT3, and explore the attractive therapeutic potential by targeting C21orf58 in HCC.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Carcinogênese , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
17.
Bull Math Biol ; 86(3): 32, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363386

RESUMO

In some patients with myeloproliferative neoplasms (MPN), two genetic mutations are often found: JAK2 V617F and one in the TET2 gene. Whether one mutation is present influences how the other subsequent mutation will affect the regulation of gene expression. In other words, when a patient carries both mutations, the order of when they first arose has been shown to influence disease progression and prognosis. We propose a nonlinear ordinary differential equation, the Moran process, and Markov chain models to explain the non-additive and non-commutative mutation effects on recent clinical observations of gene expression patterns, proportions of cells with different mutations, and ages at diagnosis of MPN. Combined, these observations are used to shape our modeling framework. Our key proposal is that bistability in gene expression provides a natural explanation for many observed order-of-mutation effects. We also propose potential experimental measurements that can be used to confirm or refute predictions of our models.


Assuntos
Transtornos Mieloproliferativos , Neoplasias , Humanos , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Conceitos Matemáticos , Modelos Biológicos , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Mutação
18.
Oncotarget ; 15: 65-75, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38319731

RESUMO

Multiple myeloma (MM) is the most common primary malignancy of the bone marrow. No established curative treatment is currently available for patients diagnosed with MM. In recent years, new and more effective drugs have become available for the treatment of this B-cell malignancy. These new drugs have often been evaluated together and in combination with older agents. However, even these novel combinations eventually become ineffective; and, thus, novel therapeutic approaches are necessary to help overcome resistance to these treatments. Recently, the Janus Kinase (JAK) family of tyrosine kinases, specifically JAK1 and JAK2, has been shown to have a role in the pathogenesis of MM. Preclinical studies have demonstrated a role for JAK signaling in direct and indirect growth of MM and downregulation of anti-tumor immune responses in these patients. Also, inhibition of JAK proteins enhances the anti-MM effects of other drugs used to treat MM. These findings have been confirmed in clinical studies which have further demonstrated the safety and efficacy of JAK inhibition as a means to overcome resistance to currently available anti-MM therapies. Additional studies will provide further support for this promising new therapeutic approach for treating patients with MM.


Assuntos
Inibidores de Janus Quinases , Mieloma Múltiplo , Pirazóis , Humanos , Mieloma Múltiplo/patologia , Inibidores de Janus Quinases/uso terapêutico , Pirimidinas/uso terapêutico , Nitrilas/uso terapêutico , Janus Quinases/metabolismo , Janus Quinase 2/metabolismo , Janus Quinase 1/metabolismo , Inibidores de Proteínas Quinases/farmacologia
19.
Sci Rep ; 14(1): 2810, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308077

RESUMO

Myeloproliferative neoplasms (MPNs) encompass a diverse group of hematologic disorders driven by mutations in JAK2, CALR, or MPL. The prevailing working model explaining how these driver mutations induce different disease phenotypes is based on the decisive influence of the cellular microenvironment and the acquisition of additional mutations. Here, we report increased levels of chromatin segregation errors in hematopoietic cells stably expressing CALRdel52 or JAK2V617F mutations. Our investigations employing murine 32DMPL and human erythroleukemic TF-1MPL cells demonstrate a link between CALRdel52 or JAK2V617F expression and a compromised spindle assembly checkpoint (SAC), a phenomenon contributing to error-prone mitosis. This defective SAC is associated with imbalances in the recruitment of SAC factors to mitotic kinetochores upon CALRdel52 or JAK2V617F expression. We show that JAK2 mutant CD34 + MPN patient-derived cells exhibit reduced expression of the master mitotic regulators PLK1, aurora kinase B, and PP2A catalytic subunit. Furthermore, the expression profile of mitotic regulators in CD34 + patient-derived cells allows to faithfully distinguish patients from healthy controls, as well as to differentiate primary and secondary myelofibrosis from essential thrombocythemia and polycythemia vera. Altogether, our data suggest alterations in mitotic regulation as a potential driver in the pathogenesis in MPN.


Assuntos
Transtornos Mieloproliferativos , Policitemia Vera , Mielofibrose Primária , Animais , Humanos , Camundongos , Calreticulina/genética , Calreticulina/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Mutação , Transtornos Mieloproliferativos/genética , Policitemia Vera/genética , Mielofibrose Primária/genética , Microambiente Tumoral
20.
Int Immunopharmacol ; 129: 111576, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38350353

RESUMO

Cyanogramide (AC14), a novel alkaloid, isolated from the fermentation broth of the marine-derived Actinoalloteichus cyanogriseus. However, the exact role of AC14 in inflammatory bowel disease (IBD) is poorly understood. Our results demonstrated that AC14 exhibited significant inhibition of IL-6 release in THP-1 cells and a "Caco-2/THP-1" coculture system after stimulation with LPS for 24 h. However, no significant effect on TNF-α production was observed. Furthermore, in 2.5 % DSS-induced colitis mice, AC14 treatment led to improvement in body weight, colon length, and intestine mucosal barrier integrity. AC14 also suppressed serum IL-6 production and modulated dysregulated microbiota in the mice. Mechanistically, AC14 was found to inhibit the phosphorylation of Janus kinase (JAK) 2 and signal transducers and activators of transcription (STAT) 3, while simultaneously elevating the expression of suppressor of cytokine signaling (SOCS) 3, both in vivo and in vitro. These findings suggest that AC14 exerts its suppressive effects on IL-6 production in DSS-induced IBD mice through the JAK2-STAT3-SOCS3 signaling pathway. Our study highlights the potential of AC14 as a therapeutic agent for the treatment of IBD.


Assuntos
Alcaloides , Antineoplásicos , Doenças Inflamatórias Intestinais , Poríferos , Humanos , Camundongos , Animais , Interleucina-6/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Células CACO-2 , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/tratamento farmacológico , Janus Quinase 2/metabolismo , Poríferos/metabolismo , Alcaloides/uso terapêutico , Fator de Transcrição STAT3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...